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4.

ABSTRACT

A domain independent planning program that supports both automatic and interactive

generation of hierarchical, partially ordered plans is described. An improved formalism

for representing domains and actions is presented. The formalism makes extensive use of

contraints, provides efficient methods for representing properties of objects that do not change

over time, allows specification of purpoee for determining plan rationale, allows specification

of resource8, and provides the ability to express deductive rules about how the world works.

The system deduces the effects of actions using deductive rules. The implications of allowing

parallel actions in a plan or problem solution are discussed. New techniques for efficiently

detecting and remedying harmful parallel interactions are presented. The most important

of these techniques, reasoning about resources, is emphasized and explained. The syst.em

supports concurrent exploration of different branches in the search, making best-first search

easy to implement. Meta-planning and its implications for domain independent planning are

discussed in some detail, and primitive execution monitoring capabilites are described.
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1. The Planning Problem

The problem of generating a sequence of actions to accomplish a goal is referred to as

planning. To automate planning in a computer program involves representing the world,

representing actions and their effects on the world, reasoning about the effects of sequences

of such actions, reasoning about the interaction of actions that are taking place concurrently,

and controlling the search so that plans can be found with reasonable efficiency.

The ability to reason about actions is a core problem for artificial intelligence. It is part

of the common-sense reasoning people do all the time. By reasoning about actions, a program

could plan your travel for you, control a robot arm in a changing environment, get a computer

system or network to accomplish your computing goals, or any number of other things that

are beyond the scope of current systems. This problem is even central to conversing in natural

language. First, because many utterances are deliberately planned to achieve specific goals,

and also because it is often necessary to create your own model of other people's plans in order

to understand their utterances. Despite the importance of the problem, relatively little has

been accomplished in recent years. This paper describes progress on this problem that has

resulted from development of a planning program at SRI International.'

Planners designed to work efficiently in a single problem domain, though desirable, often

depend on the structure of that domain to such an extent that the underlying ideas cannot

be readily used in other domains. Currently, a new program (often requiring its own unique

representation and heuristics) must be developed for each new domain (if the domain is complex

enough to be interesting) in order to get reasonable performance. This paper discusses domain

independent planners which are of particular interest since they provide planning techniques

that are applicable in many domains, and provide a general planning capability. Such a

common-sense planning ability is likely to involve different techniques than those used by an

expert planning in his particular domain of expertise, but is a necessary ability for people in

'The research reported here is supported by Air Force Office of Scientific Research Contract F49620-79-C-
0188.
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their daily lives and for intelligent program. Of course, a general planner should provide

representations and methods for including domain specific knowledge and heuristics.

There is no guarantee, except for human performance, that a large central core of domain

independent planning techniques exists. It is important to enlarge this core as much as possible

so we do not have to write a new planner for each new domain. Such motivation lies behind

other Al research; for example EMYCIN [151 is an attempt to clarify the domain independent

core of expert systems such as MYCIN, and TEAM [31 provides natural language access to

data bases independent of the domain or structure of the data base. This paper describes

an implemented planning program that expands the core of domain independent planning

techniques as it builds on and extends previous domain independent planning systems such

as Sacerdoti's NOAH [10], Tate's NONLIN [14), Sridharan's PLANX1O [11], Vere's DEVISERr

[16], and SRI's STRIPS [11.

Two features found in many planning systems wre also central in this 'work- hierarchical

planning, and parallel actions. Hierarchical planning is often necessary for real-world domains

since it helps avoid the tyranny of detail that would result from planning at the most primitive

level. By first planning at more abstract levels, the planner can reduce the search space by

expanding these more abstract plans into more detailed plans. Parallel actions are also useful

for real-world domains. Such domains are often multi-effector or multi-agent (e.g., having

4 two robot arms to construct an object, or having two editors to work on your report), and

the best plans should use these agents in parallel when possible. This distinguishes planning

from much of the work in program synthesis, since the goal there is often a strictly sequential

program. A planning system that allows parallel actions must be able to reason about how

actions interact with each other since interference between parallel actions may prevent the 7

plan from accomplishing its goal. This is a major problem for planning systems and a major

focus of this paper.
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2. Overview of SEPE

We have designed and implemented (in INTERLISP) a system, SIPE, (System for Interactive

Planning and Execution monitoring), that supports domain independent planning. The pro-

gram has produced correct parallel plans for problems in four different domaixs (the blocks

world, cooking, aircraft operations, and a simple robotics assembly task). The system allows

for hierarchical planning and parallel actions. Development of the basic planning system has

led to several extensions of previous systems. These include the development of a perspicuous

formalism for encoding descriptions of actions, the use of constraints to partially describe ob-

jects, the creation of mechanisms that permit concurrent exploration of alternative plans, the

incorporation of heuristics for reasoning about resources, mechanisms that make it possible

to perform simple deductions, and advanced abilities to reason about the interaction between

parallel actions.

SIPE can automatically generate plans, but, unlike its predecessors, SIPE is designed

to also allow interaction with users throughout the planning and plan execution processes,

if this is desired. The user is able to watch and, when desired, guide and/or control the

planning process. Our concern with interaction means that perspicuous representations have

been favored and that some search control issues have not been addressed as yet. As the

system evolves, more methods for controlling the search will be developed and more problems

will be solved automatically. This evolutionary approach has several advantages. From the

planning point of view it allows us to address larger, "real-world" problems which may initially

4 be beyond the capabilities of fully automatic planning techniques, but which could providep

interesting research problems. Development of an interactive planner also encourages us to deal

with the issue of representing the planning problem in terms that can be easily communicated

to a user. This is also important for an automatic planner, because the machine must still

be able to communicate about the planning it has performed. Our system raises issues in

human-machine interaction, but this paper addresses only the planning aspects of our work.

In SIPE, a plan is a set of partially ordered goals and actions, which is composed by the
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system from operators (the system's description of actions that it may perform). Plans that

do not achieve the desired goal may sometimes be generated by simply applying operators,

so the system also has critics which find possible problems and attempt to correct them. In

particular, most of the reasoning about interactions between parallel actions is done by the

critics. The plans are represented in procedural nets [10], primarily for graceful interaction

between man and machine. Invariant properties of objects in the domain are represented

in a type hierarchy, which allows inheritance of properties and the posting of constraints

on the values of attributes of these objects. The relationships which change over time, and

therefore all goals, are represented in a version of first-order predicate calculus which is typed

and interacts with the knowledge in the type hierarchy. Operators are represented in an

easily understood formalism we have developed [7] in which the ability to post constraints on

variables is a primary feature. Each of these parts of the system will be described in more

detail later in the paper.

It should be noted here that, like most domain independent planning systems (DEVISER

being an exception), ours assumes discrete time, discrete states, and discrete operators. Time

need not be represented explicitly for many tasks since the ordering links in the procedural

network provide the necessary ordering information. It is assumed that each world state that

can be reached is discrete and can be represented explicitly. The operators are also discrete,

with the effects of an action occurring instantaneously as far as the system is concerned. This

applies to a given abstraction level; using hierarchical planning, the system can order the

effects which occur at a lower level of detail. These assumptions are acceptable in many real-

world domains and have been made by most previous planners. They are however restrictive

* and prevent many real-world phenomena from being adequately represented. For example,

sophisticated reasoning about time and modelling of dynamic processes are not possible within

our present framework. Few artificial intelligence programs have addressed these problems,

McDermott's recent work being a notable exception [81.

This paper describes SIPE in more detail by giving its solutions to four major problems a



planner must address. These problems are representation (of the domain, goals, and operators),

recognizing and dealing with parallel interactions, controlling the search, and monitoring

execution. The next four sections describe these four problems, and stress new developments

in SIPE by comparing it to previous systems. Most of the new developments are in the first

two areas; the latter two being areas of some progress in which research is continuing.

3. Representation

One of the central concerns in designing a representation for a planning system is how to

represent the effects an action has on the state of the world. This means the frame problem

110] must be solved in an efficient manner. Since many domains will hopefully be encoded in

the planning system, it is also necessary that the solution to the frame problem not be too

cumbersome. For example, one does not want to have to write a large number of frame axioms

for each new action that is defined.

The planning representation problem involves representing the domain, goals, and operators.

Operators are the system's representation of actions that may be performed in the domain r

or, in the hierarchical case, abstractions of actions that can be performed in the domain.

An operator includes a description of how each action changes the state of the world. In a

* logical formalism such as Rosenschein's adaptation of dynamic logic to planning [9], the same

representational formalism may be used for representing the domain, goals, and operators, but

in many planners more concerned with efficiency, including SIPE, there are different repre-

sentations for each. The goal is to have a rich enough representation so that many interesting

domains can be represented (an advantage of logical formalisms), but this must be traded off

against the ability of the system to deal with its representations efficiently during the planning

process.
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3.1 Representation of domain and goals

The system provides for representation of domain objects and their invariant properties

with nodes linked in a hierarchy. Invariant properties do not change as actions planned by the

system are performed (e.g., the size of a frying pan does not change when you cook something

in it). Each node can have attributes associated with it, and can inherit properties from other F

nodes in the hierarchy. The values of attributes may be numbers, pointers to other nodes, key 1

words the system recognizes, or any arbitrary string (which can only be used by checking if

it is equal to another such string). The attributes are an integral part of the system, since

planning variables are also nodes in the hierarchy and they contain constraints on the values

of attributes of possible instantiations. Constraints are an important part of the system and :
are discussed in considerable detail later. There are different node types for representing

variables, objects, and classes, but these will not be discussed in detail here since they are

similar to those occurring in many representation formalisms; for example, semantic networks

and UNITS [12]. '
All parts of the system are actually nodes in this hierarchy; for example, procedural net V

nodes, operators, and goals are all represented as nodes in this hierarchy. However, unlike

variables and domain objects, these latter nodes are near the top of the hierarchy and do not

make use of the inheritance of properties, nor the constraints on attribute values. The use of

a uniform formalism for all parts of the system has been helpful both in implementation and

in interaction with users.

Properties of domain objects and relationships among them that may change as actions V

are performed are represented in first-order logic. Thus, logic is used to describe goals as

well as the preconditions and effects of operators. Quantifiers are allowed whenever they can

be efficiently handled. Universal quantifiers are always permitted, existential quantifiers can

occur in the preconditions of operators but not in the effects. Disjunction is not allowed.

These restrictions result from using "add lists" to solve the frame problem. (Why this is so

is described in the next section). By separating the invariant properties of the domain, SIPE
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reduces the number of formulas in the system and makes deductions more efficient. There

is currently no provision for creating objects as actions are executed. Some domains can be

best represented as creating and destroying objects (e.g., after you have made an omellette

do the original three eggs still exist as objects?), but SIPE does not support this type of

representation.

3.2 Representation of operators

Operators representing actions the system may perform contain information about the

objects thas participate in the actions (represented as resources and argur "of the actions),

what the action is attempting to achieve (its goal), the effects of the ac .t when they are

performed, and the conditions necessary before the actions can be perfor (their precondi-

tions). Before SIPE's representation is described in detail some basic a-. ,ions made by

SIPE about the effects of actions need to be presented.

Determining the state of the world after actions have been performed (e.g., the planner

must tell if goals have been achieved), involves solving the frame problem. Here we make

what Waldinger [17] has called the STRIPS assumption which is that all relations mentioned

in the world model are assumed to remain unchanged unless an action in the plan specifies

that some relation has changed. In STRIPS, an action specifies that a relation has changed

by mentioning it on an "addlist" or "deletelist". Alternatively, relations that change might

be deduced from general frame axioms as long as the deduction is tightly controlled.

Making this assumption puts requirements on the formalism used for representing the

domain since it must support the STRIPS assumption. While the STRIPS assumption may be

very limiting in the representation of rich domains such as automatic programming, there are

a many domains of interest for which it causes no problems. For example, the fairly simple

environmeits in which robot arms often operate appear to be capable of being adequately

represented in a system embodying the STRIPS assumption. SIPE currently makes the closed-

world assumption: any negated predicate is true unless the unnegated form of the predicate

8



is explicitly given in the model or in the effects of an action that has been performed. This is

not critical; the system could be changed to assume that a predicate's truth-value is unknown

unless an explicit mention of the predicate is found in either negated or unnegated form.

Deduction in SIPE does not violate the closed-world assumption; it is used only to deduce

effects of an action when the action is added to a plan (thus saving the operator that represents

the action from having to specify these effects).

Many features combine to make SIPE's operator description language an improvement

over operator descriptions in previous systems. These features will be presented by discussing

the example operator given in Figure 1, with the more important features having subsections

devoted to them. The SIPE system has produced correct parallel plans for problems in

four different domains, one of which is the blocks world (described in [10]) for which many

domain independent planning systems (e.g., NONLIN and NOAH) have presented solutions.

To facilitate comparison with these systems, a PUTON operator for the blocks world in the

SIPE formalism is shown in Figure 1.

The operator's effects, preconditions, and purpose are all encoded as first-order predicates

on variables and objects in the donmain. (In this case, BLOCK1 and OBJECTi are variables.)

Negated predicates that occur in the effects of an operator essentially remove from the model

a fact that was true before but is no longer true.

Operators contain a plot that specifies how the action is to be performed in terms of

actions and goals at either the current level or some lower level of the hierarchy. Like plans,

plots are represented as procedural networks. When used by the planning system, the plot can

be viewed as instructions for expanding a node in the procedural network to a greater level of

detail. The plot of an operator can be described either in terms of goals to be achieved (i.e.,

a predicate to make true), or in terms of processes to be invoked (i.e., an action to perform).

(NOAH represented a process as a goal with only a single choice of action.) Encoding a step

as a process implies that only the action it defines can be taken at that point, while encoding

a step as a goal implies that any action can be taken that will achieve the goal. Another less



OPERATOR: PUTON
ARGUMENTS: BLOCKI, OBJECTI IS NOT BLOCKI;
PURPOSE: (ON BLOCKI OBJECTI);
PLOT:

PARALLEL
BRANCH 1:

GOALS: (CLEARTOP OBJECTI);
ARGUMENTS: OBJECTI;

BRANCH 2:
GOALS: (CLEARTOP BLOCKI);
ARGUMENTS: BLOCKI;

END PARALLEL

PROCESS
ACTION: PUTON.PRIMITIVE;
ARGUMENTS: OBJECT1;
RESOURCES: BLOCKI;
EFFECTS: (ON BLOCKI OBJECTI);

END

Figure 1
a PUTON operator in SIPE

explicit difference between encoding a step as a goal or as a process is whether the emphasis

is on the situation to be achieved or the actual action being performed.

During planning, an operator is used to expand an already existing GOAL or PROCESS

node in the procedural network to produce additional procedural network structure at the

next level. For example, the PUTON operator might be applied to a GOAL node in a plan

whose goal predicate is (ON A B). Operators may specify preconditions that must obtain

in the world state before the operator can be applied. (The operator in Figure I has no

precondition.) Operators contain lists of resources and arguments to be matched with the

resources and arguments of the node being expanded. In our example, A and B in the GOAL

node are matched with BLOCKI and OBJECTI in the PUTON operator when the operator

is used to expand the not'-,. The plot of the operator is used as a template for generating two

GOAL nodes and one PROCESS node in the plan.

Operators in SIPE provide for posting of constraints on variables, specification of resources,
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explicit representation of the purpose of each action, and the use of deduction to determine

effects of actions. Each of these features is described below in some detail. In addition to

these features, SIPE provides the ablity to apply the plots of operators to lists of objects.

Variables in an operator can be instantiated to a list of objects by calling a generator function

given in the GENERATOR attribute of the CLASS node of the variable. For example, suppose

BLOCKSI is a variable in an operator and the CLASS node for BLOCKS in the type hierarchy

has a function as the value of its GENERATOR attribute. In this case, application of that

operator will result in the function being called to instantiate BLOCKS1 (e.g., to a list of

q blocks). The plot of the operator may then contain an ITERATE-BEGIN and an ITERATE-

END, and the plot within these tokens will be reproduced in the resultant procedural net

once for each different block in the list BLOCKS1. For example, a CLEARTOP goal could be

S generated for each block in the list. This is useful for generating paths to move along in the

aircraft operations domain, as described in the section on performance.

3.2.1 Partially Described Objects

One of SIPE's most important advances over previous domain independent planning

systems is its ability to construct partial descriptions of unspecified objects. This ability isI

important both for domain represention (e.g., objects with varying degrees of abstractness can

be represented in the same formalism), and for efficiently finding solutions (since decisions can

* ~. be delayed until partial descriptions provide more information). Comparisons to other systems

are at the end of this section, but almost no previous domain independent planning systems

have used this approach (e.g., NOAH cannot partially describe objects) so the constraints in

SIPE will be documented in some detail.

Planning variables which do not yet have an instantiation (these are INDEFINITE nodes

in the type hierarchy) can be partially described by setting constraints on the possible values

an instantiation might take. Constraints may place restrictions on the properties on an object

( e.g., requiring certain attribute values for it in the type hierarchy), and also require that



certain relationships exist between an object and other objects (e.g., predicates that must

be satisfied in a certain world state). SIPE provides a general language for expressing these

constraints on variable bindings so they can be encoded as part of the operator. During

planning, the system also generates constraints based on interactions within a plan, propagates

them to variables in related parts of the network, and finds variable bindings that satisfy all

constraints.

The allowable constraints in SIPE on a variable V are listed below:

eCLASS. This constrains V to be in a specific class in the type hierarchy. In SIPE's

operator description language there is implicit typing based on variable name, so in the

PUTON operator in Figure I the variable created for BLOCK 1 has a CLASS constraint which

requires the instantiation for the variable to be a member of the class BLOCKS. Similarly, the

OBJECTI variable has a CLASS constraint for class OBJECTS.

*NOT-CLASS. V must be instantiated so that it is not a member of a given class.

*PRED. V must be instantiated so that a given predicate (in which V is an argument of

the predicate), is true. This results in an explicit number of choices for V's instantiation since

all true facts are known (by the closed-world assumption).

eNOT-PRED. V must be instantiated so that a given predicate (in which V is an argument

of the predicate), is not true.

eINSTAN. V must be instantiated to a given object. This could be represented using SAME

applied to objects as well as variables (or using PRED with an EQ predicate), but instantiation

is a basic function of the system and warrants its own constraint to provide a slight gain in

efficiency.

eNOT-INSTAN. V must not be instant'%ted to a given object.

*SAME. V must be instantiated to the same object to which some other given variable is

instantiated.

12



*NOT-SAME. V must not be instantiated to the same object to which some other given

variable is instantiated. In the PUTON operator in Figure 1, the phrase "IS NOT BLOCKI"

results in a NOT-SAME constraint being posted on both BLOCKI and OBJECTI that requires

they not be instantiated to the same thing. Thus if SIPE is looking for a place to put block

A, it will not choose A as the place to put it.

9OPTIONAL-SAME. This is similar to SAME but merely specifies a preference and is not

binding. For example, one would prefer to conserve resources by making two variables be the

same object, but if this is not possible then different objects are acceptable.

*OPTIONAL-NOT-SAME. This is similar to NOT-SAME but not binding. If SIPE notices

that a conflict will occur between two parallel actions if two variables are instantiated to the

same object, then it will post a OPTIONAL-NOT-SAME constraint on both variables. If it

is possible to instantiate them differently then a conflict is avoided. If it is not, they may be

made the same but the system will have to correct the ensuing conflict (perhaps by not doing

things in parallel).

eAny attribute name. This requires a specific value for a specific attribute of an object. For

example, the PUTON operator could have specified "BLOCKI WITH COLOR RED". This

would create a constraint on BLOCKI requiring the COLOR attribute (in the type hierarchy)

of any possible instantiation to have the value RED. For attributes with numerical values,

"greater than" and "less than" can also be used. In planning an airline schedule, for example,

the operator used for cross country flights might contain the following variable declaration:

"PLANE1 WITH RANGE GREATER THAN 3000".

This list documents the constraints used in SIPE. Constraints add considerably to the

complexity of the planner since they interact with all parts of the system. For example, to

determine if a goal predicate is true, SIPE must see if it matches predicates that are effects

earlier in the plan. This may involve matching two variables which are arguments to the two

predicates, and this in turn involves determining whether the constraints on the two variables

13



are compatible. In a similar way, constraints also interact with the deductive capability of

the system (to be described later). Constraints also affect critics since determining if two

concurrent actions interact may depend on whether their constraints are compatible. SIPE

must also solve a general constraint satisfaction problem with reasonable efficiency, though how

to control the amount of processing spent on constraint satisfaction is an open and important

question.

Use of constraints is a major advance over previous domain independent planning systems.

NOAH, for example, would have to represent every property of an object as a predicate and

then have each such predicate as either a precondition of an operator or a goal in the plan in

order to get variables properly instantiated. In SIPE an operator might declare a variable as

"CARGOPLANEI WITH RANGE 3000" and the plan using this variable can assume it has the

proper type of aircraft. In NOAH, goals similar to (CARGOPLANE X) and (RANGE X 3000)

would have to be included in the operator and achieved as part of the plan. This makes both the

operators and plans much longer and harder to use and understand. In addition to syntactic

sugar, constraints in SIPE improve efficiency and expressibility. The OPTIONAL-SAME and

OPTIONAL-NOT-SAME constraints used in resource reasoning cannot be expressed as goals

or preconditions in a system like NOAH. The constraint satisfaction algorithm used in SIPE

takes advantage of the fact that invariant properties of objects are stored directly in the type

hierarchy. The lookup of such properties in SIPE is much more efficient than the process of

looking through the plan to determine which predicates are currently true, as would have to

be done in systems like NOAH and NONLIN.

Some domain dependent systems make use of constraints. Stefik's system [12], one of the

few existing planning systems with the ability to construct partial descriptions of an object

without identifying the object, operates in the domain of molecular genetics. Our system

extends Stefik's approach in three ways. (1) We provide au explicit, general set of constraints

that can be used in many domains. Stefik does not present a list of allowable constraints

in his system, and some of them that are mentioned seem specific to the genetics domain.
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(2) Constraints on variables can be evaluated before the variables are fully instantiated. For

example, a set can be created that can be constrained to be only bolts, then to be longer than

one inch and shorter than two inches, and then to have hex heads. This set can be used in

planning before its members are identified in the domain. (3) Partial descriptions can vary

with the context, thus permitting simultaneous consideration of alternative plans involving the

same unidentified objects. This is described in more detail in the section on search control.

3.2.2 Resources

The formalism for representing operators in SIPE includes a means of specifying that

some of the variables associated with an action or goal actually serve as resources for that

action or goal (e.g., BLOCKI is declared as a resource in the PUTON.PRIMITIVE action of

the PUTON operator in Figure 1). Resources are to be employed during a particular action

and then released, just as a frying pan is used while sauteeing vegetables. Reasoning about

resources is a common phenomenon. It is a useful way of representing many domains, a natural

way for humans to think about problems, and, consequently, an important aid to interaction

with the system.

SIPE has specialized knowledge for handling resources; declaration of a resource associated

with an action is a way of saying that one precondition of the action is that the resource

be available. Mechanisms in the planning system, as they allocate and deallocate resources,

automatically check for resource conflicts and ensure that these availability preconditions will

be satisfied. One advantage of resources, therefore, is that they help in the axiomatization and

representation of domains. The user of the planning system does not have to axiomatize as

a precondition the availability of resources in the domain operators. (Such an axiomatization

may be difficult since the critics must correctly use the representation to recognize problems

with unavailable resources.) This enables both SIPE's operators and plans to be shorter and

easier to understand than similar operators and plans in domain independent parallel planning

systems such as NOAH and NONLIN. Resource availability in the latter would have to be
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axiomatized and checked in the preconditions of operators, while resource conflicts (which

can be quickly identified and corrected in SIPE) would have to be caught by the normal

problematic interaction detector, which is less efficient (as shown in the section on parallel

interactions).

3.2.3 Purposes

In the procedural networks that represent plans, PROCESS and GOAL nodes represent

an action to be performed or a goal to be achieved. Associated with these nodes are predicates

stating the expected effects of performing the action or achieving the goal. When a node is

planned to a greater level of detail by applying an operator, the expansion may consist of many

nodes. Which node in the expansion achieves the main purpose of that sequence of steps must

be determined to ascertain when the effects of the higher level node become true in the more

detailed expansion. (This may be the last in a series of nodes that, acting together, achieve

the tacit "purpose" of the expansion.) Determining purposes correctly is also necessary for

correcting problems arising from parallel interactions.

The word purpote will be used to refer to different objects in the following discussion; the

meaning is disambiguated by context. The purpose of an operator is its purpose attribute,

which is a conjunction of predicates. When the operator is used to produce an expansion, this

purpose attribute is used to determine the purpose of the expansion that is the node in the

piece of procedural net produced by the expansion that achieves the purpose of the operator.

Nodes in a procedural net may also have a purpose, which is another node (occurring later)

in the procedural net.

Let us consider the GOAL node in Figure 2 in which the goal is (SECURED PUMP). The

SECURE PUMPBOLTS operator expands this node into three nodes at the next level of detail

as shown. The first node might be called a preparatory action, and the last a cleanup action.

Somewhere must be encoded the fact that (SECURED PUMP) becomes true after the second

node in the expansion. This is needed, for example, in answering user questions or determining
18
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goal node in
procedural net:

GOAL
arguments, PUMP r
goal: (SECURED PUMP

Operator node from type hierarchy (not part of the procedural net):

OPERATOR
SECURE PUMPBOLT

goal: (SECURED PUMP)
arguments: PUMPI
resources: WRENCHI
purpose: (TIGHT PUMPBOLTS)
plot: ...

Expansion produced after applying SECURE PUMPBOLT operator to goal node:

PROCESS PROCESS
GET WRENCH PROCESS PUT WRENCH AWAY
effects: TIGHTEN BOLTS effects:
(IN WRENCH HAND) effects: (IN WRENCH TOOLBOX)

7 (NOT (IN WRENCH TOOLBOX)) (TIGHT PUMPBOLTS) (NOT (IN WRENCH HAND))

Figure 2
Using an Operator to Produce an Expansion

the correct world state at the PUT WRENCH AWAY node (perhaps some operators for putting

the wrench away may be affected by or depend upon the state of the pump). Each operator in

SIPE has a PURPOSE attribute that specifies a conjunction of predicates, which is the main

purpose of any expansion produced with this operator. (The PURPOSE attribute is also used

to determine when to apply the operator whenever no GOAL attribute is given). Thus, the

PURPOSE of the SECURE PUMPBOLTS operator is the predicate (TIGHT PUMPBOLTS).

This is included in the effects of the TIGHTEN BOLTS node produced in the plan, so the

(SECURED PUMP) effect is copied down to this node. In NOAH the assumption was that the

last node of an expansion achieved the main purpose, so the effects were copied down to that

node. In the example above, this would incorrectly attach (SECURED PUMP) to the PUT

WRENCH AWAY node. SIPE allows flexibility in specifying purposes, so that situations like

17
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the one described above can be represented accurately.

Besides determining purposes between hierarchical levels (as above), it is helpful to deter-

mine purposes within a level. For eyxample, in Figure 2 it would be helpful to know that the

purpose of the GET WRENCH node in the plan is the TIGHTEN BOLTS node. If there were a

conflict over the wrench with some parallel action, the system would then be able to determine

that the wrench could be released to another process after the pumpbolts were tight and before

the wrench was put away. SIPE also provides flexibility in specifying these purposes. Nodes

in the plot of an operator can specifically mention later nodes in the plot as their purpose.

If none is mentioned, then the default (which takes advantage of the flexibility in specifying

purposes between hierarchical levels) is that the purpose of all nodes in the expansion before

the main purpose of the expansion (TIGHTEN BOLTS in this case) is that main purpose. This

default correctly fixes the purpose of the GET WRENCH node in Figure 2, while in NOAH

* the default purpose would imply the wrench must be kept until it is back in the tool box.

Correctly determining purposes is important for correcting problematic parallel interac-

tions within a plan. The section on parallel interactions discusses in some detail the role

* purposes play in correcting problems.

3.3 Deductive Operators i

* In addition to operators describing actions, SIPE allows specification of deductive operators

that deduce facts from the current world state. As more complex domains are represented, it

becomes increasingly important to deduce effects of actions from axioms about the world rather

than explicitly representing these effects in operators. For example, the PUTON operator in

Figure 1 lists only (ON BLOCKI OBJECTI) as an effect. It does not mention which objects

are and are not now CLEARTOP since that is deduced by deductive operators. Deductive

operators in SIPE may include both existential and universal quantifiers, and so provide a rich 71

formalism for deducing (possibly conditional) effects or an action. Effects that are deduced

in SIPE are considered to be side effects. (Operators can also specify effects as either main
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DEDUCTIVE.OPERATOR: DCLEAR
ARGUMENTS: OBJECT 1,OBJECT2,BLOCK3 IS NOT OBJECT2,

OBJECT4 CLASS EXISTENTIAL IS NOT OBJECTI;
TRIGGER: (ON OBJECT1 OBJECT2);
PRECONDITION: (ON OBJECTI BLOCK3), (NOT (ON OBJECT4 BLOCK3));
EFFECTS: (CLEAR BLOCK3);

Figure 3

a deductive operator in SIPE

effects or side effects.) Knowing which effects are merely side effects is important in handling

parallel actions (see next section).

Figure 3 shows one of the deductive operators in the SIPE blocks world for deducing

CLEARTOP relationships. Deductive operators are written in the same formalism as other

operators in SIPE, permitting the system to control deduction with the same mechanisms it

uses to control the application of operators. This also allows constraints to be used and, as

this example shows, they play a major role in SIPE's deductive capability.

Deductive operators have triggers for controlling their application. The DCLEAR operator

in Figure 3 is applied when OBJECTI is placed on OBJECT2. Deductive operators have no

instructions for expanding a node to a greater level of detail. Instead, if the precondition of

a deductive operator holds, its effects can be added to the world model (in the same context

in which the precondition matched) without changing the existing plan. This may "achieve"

some goal in the plan (by deducing that it has already been achieved) and avoid the need to

plan actions to achieve it. In Figure 3, matching the precondition will bind BLOCK3 to the

block that OBJECTI was on before it moved to OBJECT2. Since OBJECT4 is constrained to

be in the EXISTENTIAL class (SIPE's way of specifying existentially quantified variables) and

is constrained to not be OBJECTI, the precondition will match (and CLEARTOP of BLOCK3

deduced) only if OBJECTI is the only object on BLOCK3 (at the time just before moving

OBJECT. to OBJECT2).

Besides simplifying operators, deductive operators are important in many domains for

their ability to represent conditional effects. In NOAH's blocks world, only one block may be



on top of another so that whenever a block is moved, the operator for the move action can

be written to explicitly state the effect that the block underneath will be clear. In the more

general case in which one large block might have many smaller blocks on top of it, there may

or may not be another block on the underneath block so the effecto of the action must be

conditional on this. Since systems like NOAH and NONLIN must mention effects explicitly

(universally or existentially quantified variables are not allowed in the description of effects),

they cannot represent this more general case with a single move operator. These systems

would need two move operators - one for the one-block-on-top case, and another for the

many-blocks-on-top case, and the preconditions to separate the cases would add undesirable

complication to the representation of the operators.

As the above example shows, SIPE's deductive operators allow existential quantifiers and

are powerful enough to handle this case. In the blocks world, SIPE can deduce all the clearing

and unclearing effects that occur, so the operators themselves do not need to represent these

effects. As domains grow to include many operators, this becomes very convenient. Deductive

operators provide a way to distinguish side effects, which can be important. Using deduction,

more complicated blocks worlds can be represented more elegantly in SIPE than in previous

domain independent planners.

4. Parallel Interactions

As noted before, parallelism is considered beneficial since optimal plans in many domains

require it. (Two segments of a plan are in parallel if the partial ordering of the plan does not

specify that one segment must be done before the other.) The approach used in SIPE, therefore,

is to keep as much parallelism as possible and then detect and respond to interactions between

parallel branches of a plan. There are three aspects to this situation: recognizing interacoaons

between branches; correcting harmful interactions that keep the plan from accomplishing its

overall goal; taking advantage of helpful interactions on parallel branches so as not to produce
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inefficient plans.

This section first defines helpful and harmful interactions, and then describes new features

and heuristics in SIPE that aid in handling them. These fall into four areas: (1) reasoning

about resources, which is the major contribution of SIPE; (2) using constraints to generate

K. correct parallel plans; (3) explicitly representing the purpose of each action and goalt help

solve harmful interactions correctly; (4) taking advantage of helpful interactions.r

SIPE's abilities to handle parallel actions are best described in the context of a sample

problem. The canonical simple problem for thinking about parallel interactions is the three-

blocks problem. Blocks A, B, and C are on a table or on one another. The goal is to achieve

(ON A B) in conjunction with (ON B C), thus making a three-block tower. (Initially the two

goals are represented as being in parallel.) To move the blocks there is a PUTON operator

* (see Figure 1, for example) that puts OBJECT1 on OBJECT2. It specifies the goals of making

both OBJECTI and OBJECT2 clear before performing a primitive move action. (The table

is assumed always to be clear and a block is clear only when no block is on top of it.) This

problem will be used below to provide examples of interactions.

4.1 Defining Helpful and Harmful Interactions

If two branches of a plan are in parallel, an interaction is defined to occur when a goal

that is trying to be achieved in one branch (at any level in the hierarchy) is made either true

or ralse by an action in the other branch. Since the actions in a plan explicitly list their

*6 effects (a feature shared by many planners such as NOAH and NONLIN), it is always possible

to recognize such interactions. (in a hierarchical planner, however, they may not appear

until lower levels of the hierarchy of both branches have been planned.) By requiring that a

goal be involved in the interaction, we attempt to eliminate interactions that we do not care

about. For this to succeed, the domain must be encoded so that all important relationships

are represented as goals at some level. As we shall see later, this is reasonable in SIPE.

The planner can possibly take advantage of a situation in which a goal in one branch
P
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is made true in another branch (a helpful interaction). Suppose we solve the three-blocks

problem, starting with A and C on the table and B on A. In solving the (ON B C) parallel

branch, the planner will plan to move B onto 0, thus making A clear and C not clear. Now,

while an attempt is made to move A onto B in the (ON A B) branch, the goal of making A

clear becomes part of the plan. Since A is not clear in the initial state, the planner may decide

to make it true by moving B from A to the table (after which it will move A onto B). In thisr

case it would be better to recognize the helpful effect of making A clear, which happens in the

parallel branch. Then the planner could decide to do (ON B C) first, after which both A and

B are clear and the (ON A B) goals is easily accomplished.

The planner must decide whether or not to add more ordering constraints to the plan to

take advantage of such helpful interactions. Ordering the parallel branches sequentially is the

best solution to this problem because (ON B C) must be done first in any case, but in otherr

problems an ordering suggested to take advantage of helpful effects may be the wrong thing

to do from the standpoint of eventually achieving the overall goal. In general, the planner

cannot make such an ordering decision without crror unless it completely investigates all ther

consequences of such a decision. Since this is not always practical or desirable, planning

systems use heuristics to make such decisions.

If an interaction is detected that makes a goal false in a parallel branch, there is a

problematic (i.e., possibly harmful) interaction which may mean that the plan is not a valid

solution. For example, suppose the planner does not recognize the helpful interaction in our

problem and proceeds to plan to put B on the table and A on B in the (ON A B) branch. The

plan is no longer a valid solution (if it is assumed that one of the two parallel branches will

be executed before the other). The planner must recognize this by detecting the problematic

interaction. Namely, the goal of having B clear in the (ON B C) branch is made false in the

(ON A B) branch when A is put onto B. The planner must then decide how to rectify this

situation.

As with helpful interactions, there is no easy way to solve harmful interactions. Here too
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a correct solution may require that all future consequences of an ordering decision be explored.

Stratagems other than ordering may be necessary to solve the problem. For example, a new

operator may perhaps need to be applied at a higher level. Consider the problem of switching

the values of the two registers in a two-register machine. Applying the register-to-register move

operator creates a harmful interaction that no ordering can solve, since a value is destroyed.

The solution to this interaction involves applying a register-to-memory move operator at a

high level in order to store one of the values temporarily. Correcting many types of harmful

interactions efficiently seems very difficult in a domain independent planner - domain specific

heuristics may be required.

4.2 Reasoning about Resources

The formalism for representing operators in SIPE includes a means of specifying that some

of the variables associated with an action or goal actually serve as resources for that action

or goal. As we have seen, one advantage of resources is that they help in the axiomatization

and representation of domains. Another important advantage of resources is that they help in

early detection of problematic interactions on parallel branches. The system does not allow

one branch to use an object which is a resource in a parallel branch.

The above example of achieving (ON A B) and (ON B C) as a conjunction shows how

SIPE uses resource reasoning to help with parallel interactions. Figure 4 depicts a plan that

might be produced by NOAH or NONLIN (or SIPE without making use of resource reasoning)

for this problem. Figure 5 shows a plan from SIPE using resources in the operators.

In NOAH and NONLIN, both original GOAL nodes are expanded with the PUTON

operator or its equivalent. This produces a plan similar to the one shown in Figure 4. The

central problem is to be aware that B must be put on C before A is put on B (otherwise B

will not be clear when it is to be moved onto C). NOAH and NONLIN both build up a table

of multiple effects (TOME) that tabulates every predicate instance listed as an effect in the

parallel expansions of the two GOAL nodes. Using this table, the programs detect that B is
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ION A 81

CERCEFFECTS: (ON I C)

-• "tCLEIA R C)

Figure 4
a plan without resources

aIth resourcesCLEAR 2
ARGUMENTS: 0

Both programs then solve this problem by doing (ON B C) first.

SIPE uses its resource heuristic to detect this problem and propose the solution without

having to generate a TOME. (SIPE does do a TOME-like analysis to detect interactions that
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do not fit into the resource reasoning paradigm.) When some object is listed in an action as

a resource, the system then prevents that particular object from being mentioned as either a

resource or an argument in any action or goal that is in parallel. In the PUTON operator, the

block being moved is listed as a resource in the primitive PUTON action because it is being

physically moved. (Therefore, nothing in a parallel branch should try to move it-or even be

dependent on its current location.) Thus, as soon as the expansion, of (ON B C) with the

PUTON operator is accomplished and the plan in Figure 5 produced, SIPE recognizes that

the plan is invalid since B is a resource in the expansion of (ON B C) and an argument in

(ON A B). This can de detected without expanding the (ON A B) goal at all and without

generating a TOME.

Not allowing a resource to be mentioned as either a resource or an argument in any

4 action or goal that is in parallel is a strong restriction (though useful in practice). This is

sometimes too strong a restriction, so SIPE also permits the specification of shared resources,

whereby a resource in one branch can be an argument in a parallel branch, but not a resource.

Ideally we would like to have predicates specifying sharing conditions, but this has not yet

been implemented.

Resources help in solving harmful interactions, as well as in detecting them. In resource W

conflicts, no goal is made false on a parallel branch; however, if the resource availability

requirements were axiomatized as precondition or goal predicates, an availability goal would

be made false on a parallel branch. Thus, resource conflicts are considered to be harmful

interactions. SIPE uses a heuristic for solving resource-argument conflicts. Such an interaction

* occurs when a resource in one parallel branch is used as an argument in another parallel branch

(distinct from a resource- resource conflict, in which the same object is used as a resource in

two parallel branches). This is the type of conflict that occurs in the plan in Figure 5, since

B is a resource in the primitive PUTON action and an argument in (ON A B).

SIPE's heuristic for solving- a reso urce- argument conflict is to put the branch using the

object as a resource before the parallel branch using the same object as an argument. In this
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way SIPE decides that (ON B C) must come before (ON A B) in Figure 5. This is done without

generating a TOME, without expanding the original (ON A B) node, and without analyzing

the interaction. The assumption is that an object used as a resource will have its state or

location changed by such use; consequently, the associated action must be done first to ensure

that it will be "in place" when later actions occur that use it as an argument. This heuristic

is not guaranteed to be correct, but it has proven useful in the tour domains encoded in SIPE.

(The user can easily prevent the employment of this heuristic by interacting with the system.)

Many interactions that would be harmful in the other systems are dealt with in SIPE

by the resource-reasoning mechanisms. To take full advantage of resources, the system posts '
constraints. This capability is discussed briefly below.

4 4.3 Constraints and Resource Assignment

SIPE can accumulate various constraints on unbound variables in a plan, which is useful

for taking full advantage of resources to avoid harmful interactions. When variables that are

not fully instantiated are listed as resources, the system posts constraints on the variables that9

point to other variables that are potential resource conflicts. When allocating resources, the

system then attempts to instantiate variables so that no resource conflicts will occu~r. (See

the OPTIONAL-NOT-SAME constraint in section 3.) For example, if a robot arm is used as

a resource in the block-moving operators, the system will try to use different robot arms (if

they are available) on parallel branches, thus avoiding resource conflicts. If only one arm is

4 available, it will be assigned to both parallel branches in the hope that the plan can later be

ordered to resolve the conflict. In this way many harmful interactions are averted by intelligent

assignment of resources.

4.4 Solving Harmful Interactions

The difficulty entailed in eliminating harmful interactions has already been discussed.

However, if the system knows why each part of the plan is present, it can use this information
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to come up with reasonable solutions to some harmful interactions. Suppose a particular

predicate is made false at some node on one parallel branch and true at another node on

another parallel branch. Depending on the rationale for including these nodes in the plan, it

may be the case that the predicate is not relevant to the plan (an extraneous side effect), or

must be kept permanently true (the purpose of the plan), or must be kept only temporarily

true (a precondition for later achievement of a purpose). SIPE's ability to specify purposes

flexibly and to separate side effects from main effects enables it to distinguish accurately these

3 cases, and, therefore, to find more reasonable solutions than could most previous planners.

Solutions to a harmful interaction may depend on which of these cases holds. Let us call

the three cases side effect, purpose, and precondition, respectively, and analyze the consequent

possibilities. If the predicate in conflict on one branch is a precondition, one possible solution

is to further order the plan, first doing the part of the plan from the precondition on through

its corresponding purpose. Once this purpose has been accomplished, there 'will be no problem

in negating the precondition later. This solution applies'no matter which of the three cases

applies to the predicate in the other conflicting branch. 0

In case both conflicting predicates are side effects, it is immaterial to us if the truth

value of the predicate changes and thus no real conflict exists. In the case of a side effect

that conflicts with a purpose, one solution is to order the plan so that the side effect occurs

before the purpose; thus, once the purpose has been accomplished it will remain true. When

both conflicting predicates are purposes, there is no possible ordering -.hat will achieve both

purposes at the end of the plan. The planner must use a different operator at a higher level

or plan to reachieve one of the purposes later. However, none of the above suggestions for

dealing with interactions can be guaranteed to produce the best (by some metric, e.g., shortest)

solution.

This has been a brief summary of SIPE's algorithm for dealing with hrfmful interactions.

Systems like NOAH and NONLIN do similar things. However, SIPE provides methods for

more precise and efficient detection. It should be emphasized that many interactions that
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would be problematical in the other systems are dealt with in SIPE by the resource-reasoning

mechanisms and therefore do not need to be analyzed. When interactions are being analyzed,

SIPE requires that one of the conflicting predicates be a goal (not just a side effect) at some

level in the hierarchy. In this way, interactions between side effects that pose no problems are

not even detected. This requires that all important predicates be recognized as goals at some

level, which is easily done in SIPE's hierarchical planning scheme. SIPE provides for exactr

expression of the purpose of any goal in its operators which again leads to better analysis

of interactions. The system also distinguishes between main and side effects at each node in

the plan. This makes it easy to tell which predicates are of interest to us at any level of the

plan without looking up the hierarchy (since higher-level goals will become main effects at

lower-level actions).

4.5 Achieving Goals Through Linearization

SIPE recognizes helpful interactions and will try to further order the plan to take ad-

vantage of them, although the user can control this interactively if he wishes. It a goal that

must be made true on one parallel branch is actually made true on another parallel branch,

the system will under certain conditions order the plan so that the other branch occurs first4

(if this causes no other conflicts).

NOAH was not able to take advantage of such helpful effects. NONLIN did have an

ability to order the plan in this way. This is an important ability in many real-world domains,

1 since helpful side effects occur frequently. For example, if parallel actions in a robot world

both require the same tool, only one branch need plan to get the tool out of the tool box; the

other branch should be able to recognize that the tool is already out on the table.

5. Search control

The automatic search in SIPE is a simple depth-first search to a given depth limit

-g 28



without using knowledge for making choices or backtracking. Obviously, it does not perform

particularly well on large problems. The problems involved in planning at the meta-level to

control the search are discussed below. The poor performance of automatic search is not

debilitating in SIPE, since it has been designed and built to support interactive planning.

The user can easily invoke planning operations at any level without being required to make

tedious choices that could be performed automatically. In SIPE the user can direct low-levelp . and specific planning operations (e.g., "instantiate PLANE 1 to N283OG", "expand NODE 32

with the PUTON operator"), high-level operations that combine these lower-level ones (e.g.,

"expand the whole plan one more level and correct any problems"), or operations at any level

between the two (e.g., "assign resources", "expand NODE 32 with any operator", "find and

correct harmful interactions").

The examples above need not be given to SIPE as text since the interactive component of

SIPE makes use of graphics and has been implemented on a high-resolution black-and-white

bitmap display and a color-graphics terminal (81.2 The planning choices available to the user

appear in a menu from which one can be selected by pointing with a mouse or joystick.

Similarly, steps in a plan (nodes in the network) can either be referred to by name or by

pointing to them.

*4 Both the procedural networks (plans) produced and, for certain domains, the domain

configuration (principally the location of objects) are presented graphically. The user can

choose to view different portions of the plan, at different levels of detail, and can look at any

alternative plans. The user can also see a graphic representation of either the actual domain

configuration or the one that will exist after some sequence of planned steps. The configuration

is generally shown together with a plan or partial plan, and the configuration corresponds to

6 the expected state following execution of that plan.

One feature of SIPE not found in previous domain independent planners is the ability to
2The Office or Naval Research Contract N00014-80-C-0300 supported the application of SIPE to the prob-
lem or aircraft spotting during which the implementation of the interactive component was accomplished.
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explore alternatives in parallel. This is advantageous in an interactive environment since it

allows the user to conduct a best-first search easily. In addition to supporting breadth-first

and depth-first planning, the interactive planning operations allow islands to be constructed

in a plan (to arbitrary levels of detail), and then linked together later. The following sections

describe the implementation of parallel alternatives, and the use of meta-planning to control

the automatic search.

5.1 Exploring Alternatives in Parallel

A context mechanism has been developed to allow constraints on a variable's value to

be established relative to specific plan steps. Constraints on a variable's value, as well as

its instantiation (possibly determined during the solution of a general constraint-satisfaction

problem), can be retrieved only relative to a particular context. This permits the user to shift

focus back and forth easily between alternatives.

SIPE accomplishes this in a hierarchical proced ural- network paradigm by introducing

CHOICE nodes in the procedural networks at each place an alternative can occur. Constraints

are stored relative to choice points. Thus, the constraints on a variable at a given point in a

plan can be accessed by specifying the path of choices in the plan that is to be followed to

reach that point. Different constraints can be retrieved by specifying a different plan (path

of choices). This shifting of focus between alternatives cannot be done in systems using a

backtracking algorithm, in which descriptions built up during expansion of one alternative

4 are removed during the backtracking process before another alternative is investigated. Most

other planning systems either do not allow alternatives (e.g., NOAH), or use a backtracking

algorithm (e.g., Stefik's MOLGEN. NONLIN). An exception is the system described by Hayes-K Roth et al. [5], in which a blackboard model is used to allow shifting focus between alternatives.

6.2 Meta-planningLI Planning systems are continually making choices in an attempt to find a plan, and they
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have some control 8tructure that controls the making of these decisions. The term meta-

planning is widely used for referring to reasoning about the planning process itself. Thus

the control structure of a planning program is doing meta-planning, though in SIPE only in

an uninteresting way since the control structure is simple and contains little knowledge. (Of

course, in SIPE the most abstract operators could be written to make use of meta-planning

knowledge in a particular domain.) Many researchers have realized that meta-planning is an

important element in being able to control the search efficiently, pointing out that planning

about the planning process can be done in the same way as planning about the domain,

enabling one system architecture to be used for both the planning system and its control

structure. As Pat Hayes says in [41: "We need to be able to describe processing strategies in

a language at least as rich as that in which we describe the external domains, and for good

ro engineering, it, should be the same language."

Despite all the talk about meta-planning, no domain independent planner has done

interesting meta-planning. This section shows why this is so, but first the idea of meta-planning

must be clarified because the term is used in a vague way by many people. Once meta-planning

has been described, the problems posed by meta planning for domain independent planners

will be presented, and finally the accomplishments of previous planning systems with respect

to these new ideas are described.

The above definition is vague, and the meta-planning process needs to be described in

more detail. It will be shown that one problem in being more precise about meta-planning

is that there is often no clear dividing line between the external domain and the planning

process (counter to what Wilensky argues in (191). Given any particular system, it will likely

be obvious what is at a meta-level in that system. But any particular piece of knowledge

might be encoded at either the meta-level or the domain level and it is not always clear which

is best. It is trivial to make any domain operator into a meta-operator, and many meta-

operators can probably be wired into the domain during design of the domain representation.

A later example demonstrates an operator that would be reasonable at either the domain or
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meta-levels.

Wileasky claims that meta-planning can be distinguished by the fact that "meta-goals are

It declarative structures", but certainly all goals in a planner can be declarative. He claims that

another distinguishing characteristic is "meta-goals are domain independent,. encoding only

knowledge about planning in general". It is argued below that meta-goals actually contain

varying amounts of domain dependent knowledge. Furthermore this is necessary since good

planning strategies may differ for differing domains.

Higher level domain knowledge generally blends into search control knowledge, and there

is no clear dividing line between the two. One can view the whole system as a series of

concentric circles with the most primitive external domain level in the center. As you move

out to the next layer (concentric circle), the knowledge is at a higher level, more abstract, and

possibly more (but perhaps less?) domain independent. There is no clear dividing line betweenW

the domain independence and domain dependence. It might be possible for a domain specific

layer to encompass a more domain independent layer. It also appears there will be no clear

dividing line between what should be meta-level knowledge and what should be domain level

knowledge. (Again, in any particular system, it may be obvious what has been implemented

at- the meta-level.)

Some examples from house building should help support these claims. At the innermost

layer, knowledge about nails and lumber is certainly domain specific. A few I wers out,

knowledge that the foundation should come before the roof is still fairly domain specific.

Perhaps the next layer out contains advice such as "use existing objects". This is a fairly

domain independent idea that is used by Sacerdoti in NOAH [10], and mentioned by Wilensky

as a meta-goal for meta-planning. However, this idea still involves domain knowledge. It

is good in the building domain to use the same piece of lumber to support the roof and to

support the sheetrock on the walls. But in another domain, this may not be a good strategy.

On the space shuttle, one may want different functions to be performed by different objects so

the plan will be more robust and less endangered by the failure of any one object. So the "use
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existing objects" idea makes assumptions about the domain that need to be stated. (Perhaps

one only wants to use this idea for certain parts of the domain.) It would be reasonable to

design a system where such an idea was implemented at the lowest planning level and talked

about domain objects. It would also be reasonable to use this idea in the meta-planner as

advice to the "instantiate-variable" planning operator.

At a still more abstract layer, the system may have advice such as "apply the operator that

has been successful in the past". This is clearly control knowledge and seems not to be domain

specific. However, the operator referred to is unspecified and will only become instantiated

when this meta-operator is applied in a particular domain that contains information on past

performance of operators. Furthermore, the effectiveness of this operator will depend on the

characteristics of the domain as they are reflected in the performance data.

To summarize, meta-knowledge contains varying amounts of domain knowledge, or at

least makes assumptions about the domain that should be made explicit. There is no sharp,

clear difference between meta-planning and planning in the external domain. This means that

what we are interested in is how domain specific a particular meta-planning technique is andI
how it can be used in other domains. There are clearly some useful meta-operators that tend

towards being domain independent, for example: "evaluate (with domain knowledge?) which

operator is most likely to succeed", "do not waste resources", "switch to more constraint

checking when constraints are tailing often", "switch to less constraint checking when much

* time is being spent checking constraints and very few failures or successes occur".

The remainder of this section describes what current planning systems have accomplished

in the area of meta-planning. SIPE and other domain independent planners do not do

interesting meta-planning, and the first subsection describes why this is so. Logical formalisms

overcome some of the difficulties and the second subsection briefly mentions them. The third

subsection describes some contributions of domain dependent systems to meta-planning.
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5.2.1 Domain independent planners

There are several domain independent planners in the literature, but none of them

does interesting meta-planning. Systems such as SIPE that do hierarchical planning can

use abstract operators to encode some meta-planning knowledge, but, as the next paragraph

argues, the most interesting meta-planning ideas cannot be encoding in this manner. The only

other meta-planning done in such systems is obscure search control code; no meta-knowledge

is expressed in the domain independent formalisms used in these systems for planning in the

external domain. There is good reason for this, as these domain independent formalisms are

not adequate for expressing interesting meta-knowledge.

These formalisms generally use a model approach for representing the domain. The

essential characteristic of this approach is that all relationships that hold in the domain are

expressed directly (e.g., disjunctions are not allowed in general), in the sense that the model

can be queried in a lookup manner to quickly return an answer about the truth value of

a relationship. This efficient querying ability is, of course, the motivation for the model

approach. This approach also means that add and delete lists can be used to solve the frame

* problem. The disadvantage of the model approach is that many things cannot be represented

* since they do not admit to such direct representation. In particular, what we need to say about

plans at a meta-level cannot easily fit into the model approach, since it will not be reasonable

* to represent explicitly (for example) every property of a plan, a failed search branch, an

* operator. or a constraint that we might want to reason about at the meta-level. The point is

that, in these systems, the domain language is not all that rich (since it must satisfy this model

approach), so in fact a reasonable language for meta-planning must be richer than commonly

used domain languages.

* 5.2.2 Logic

The alternative to the model approach is to use formulas, say in some extension or

standard first-order logic. Whatever can be expressed in the logic can be said in these formulas.
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The disadvantage of the logic approach is that it may require an arbitrarily hard deduction

to query the model. In addition, the frame problem is harder to solve. Actually most of the

domain independent planners use a hybrid approach - they throw in as much logic as they can

without losing efficiency in querying the model. Logic does, however, provide a rich enough

language for doing interesting meta-planning, as is evidenced by that fact that Weyhrauch's

FOL system [18] has the power to do sophisticated meta-reasoning. Many approaches have

been outlined for doing planning in logic (or something similar), e.g., de Kleer [2], McDermott

[6], and Rosenschein [9], however, none of these has been successful (i.e., has produced a

program which performs adequately with reasonable resources) in a complex domain. The

problem is insufficient control of the many deductions that the system can perform. De Kleer

et al. have expressed some meta-knowledge in their formalism with apparent success on toy

problems; however, the problem of expressing meta-knowledge and using it effectively in these

systems remains largely unsolved.

5.2.3 Domain dependent planners

There are many domain dependent planners, e.g., PARADISE produces expert plans in

chess middle games [20]. Of these, few do interesting meta-planning, Stefik's MOLGEN

program [13] being an exception. Looking at Stefik's program then, the question is how

many of the meta-planning ideas can be used in other domains. MOLGEN has two planning

layers more abstract than the primitive domain laboratory steps, called the strategy space and

design space. The idea behind the design space is that planning can be done as operations

on constraints. This leads to meta-operators such as "propagate constraints" and "satisfy

constraints". This is a useful and powerful domain independent idea that can easily be

transferred to other domains.

However, nearly everything etse in the design space is fairly domain specific. For ex-

ample, in (51 we read that "FIND-UNUSUAL-FEATURES is a design operator that examines

laboratory goals. Sometimes a good way to select abstract operators to synthesize objects in
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cloning experiments is to find features in which the objects are highly specialized or atypical,

and then find operators that act on those features." T:.is idea is fairly specific to the genetics2

domain, and its implementation is probably completely specific. It is not clear that Stefik

provides any formalism for expressing meta-knowledge or planning knowledge, leaving the]

impression that the meta-operators are arbitrary code: "PREDICT-RESULTS is the design

operator for simulating the results of a proposed laboratory step. It activates a simulation

model associated with each laboratory operator."

In the strategy space, there are operators to change focus, make choices, and undoj

these choices after they fail. These are certainly domain independent ideas, but not terribly

0 interesting as making choices and undoing them is the idea behind simple backtracking (though

they are elegantly incorporated in the system). It would be nice to have some meta-knowledge

that analyzed the reason for failure and made the correct choice based on this analysis. Stefik

provides a layered agenda mechanism for scheduling tasks from different planning layers thati

is certainly useful in many domains.

So the interesting contributions to meta-planning for other domains are the agenda

mechana i and the idea of using constraints in this way. These are significant contributions,

especially since they are part of a system that actually works on a hard problem, but much is

6 left undone and most of the interesting meta-planning ideas have yet to be used successfully. -

Representative of these ideas are the following: analyzing failed search branches to guide

the system to the correct backtrack point and the correct choice, analyzing operators using

* knowledge to choose the correct one, integrating new knowledge that is discovered during the

planning or execution process, and changing system . ivior as characteristics of the problem

space become apparent (e.g., increase constraint checking if constraint tightness is high, or

U change the backtracking depending on the solution density).
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6. Execution Monitoring

In real-world domains, things do not always proceed as planned. Therefore, it is desirable

to develop better execution monitoring techniques and better capabilities to replan when things

do not go as expected. This may involve planning for tests to determine if things are going as

expected. Such tests may be expensive (e.g., taking a picture with a computer vision system)

so care must be taken in deciding when to use them. The problem of replanning is also critical.

In complex domains it becomes increasingly important to use as much as possible of the old

plan, rather than to start all over when things go wrong.

SIPE has addressed only some of the problems of execution monitoring, and research is

continuing in this area. During execution of a plan in SIPE, some person or computer system

monitoring the execution can specify what actions have been performed and what changes have

occurred in the domain being modeled. Based on this, the plan can be updated interactively

to cope with unanticipated occurrences. Planning and plan execution can be intermixed by

producing a plan for part of an activity and then executing some or all of that plan before

elaborating on the remaining portion.

At any point in the plan, the user can inform the system of a predicate that is now true

(though SIPE may have thought it was false). The program will look through the plan and find

all goals that are affected by this new predicate. Since SIPE understands the rationale of nodes

in the plan (through purposes), it can determine how changes affect the plaa. For example.

if a later purpose is suddenly accomplished unexpectedly, SIPE can notice the helpful effect

and eliminate a whole section of the plan since it knows the preparatory steps are only there

to accomplish the purpose. If an unexpected occurrence causes a problem, the system will

suggest all the solutions it can find. SIPE's repertoire of techniques for finding such solutions

* is not very sophisticated, however. It includes: (1) instantiating a variable differently (e.g., to

use a different resource if something has gone wrong with the one originally used in the plan),

(2) finding relevant operators to accomplish a goal that is no longer true (and inserting the

* new subplan correctly in the original plan), and (3) finding a higher level from which to replan
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if the problems are widespread.

SIPE's execution monitoring capabilities are an extension of those in previous domain

independent planners primarily because the explicit representation of purpcses allows more

sophisticated replanning. Directions for future research in execution monitoring include using

meta-planning to analyze the problem that has occurred, planning for use of information-

gathering operations, and using the resulting information to make more sophisticated revisions

to plans.

7. Performance of SIPE

SIPE has been tested in four different domains: the blocks world, cooking, aircraft

operations, and a simple robotics assembly task. These domains do not have large branching

factors or search spaces so the automatic search can find solutions. The cooking domain was

encoded to demonstrate the use of resource reasoning. SIPE operators naturally represented

requirements for frying pans and burners during the cooking of a dish. Problems such as

cooking four dishes with three pans on two burners were handled efficiently by the resource

reasoning mechanisms in SIPE. Handling a problem means producing plans for cooking as

many dishes as possible in parallel, with enough serialization to get the task accomplished

with the available resources. Such plans consisted of dozens of nodes in our simple cooking

world.

The standard blocks world was encoded in SIPE, with some enrichments (e.g., more than

one block could be on top of another). Use of deductive operators made the PUTON operator

more readable. Use of resource reasoning enabled SIPE to quickly find and correct parallel

interaction problems. All problems of building three and five block towers can be efficiently

solved as; long as they do not involve shuffling of actions between two parallel branches (i.e., the

problem must be solvable by leaving things in parallel, or placing some number of entire parallel

branches sequentially before the others). A number of other problems involving properties
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of the blocks and quantifiers were also handled elegantly (making use of the constraints in

SIPE). For example, the problem of getting 8ome red block on top of eome blue block is easily

represented and solved. (SIPE will choose a red block and a blue block that are already clear,

if such exist.)

The aircraft operations problem involved planning the launch of a number of airplanes,

given their initial locations. This may involve checking for airworthiness, finding paths from

aparking space to a fuel station to a runway, and clearing a path if no clear one exists. I
Problems in this domain included numerous aircraft and long paths, so the plans generated

contained hundreds of nodes. Using the automatic search to find paths on the grid would have

lead to a combinatorial explosion, so path variables were instantiated to a list of locations by2

a special purpose generator. SIPE's ability to allow operators to loop over a list enabled the

system to generate easily the goals of clearing the locations specified in the list produced by

the generator. Using these abilities, SIPE was able automatically to generate large plans for

correctly launching many planes from parallel runways.

The robotics problem encoded was similar to a blocks-world problem except that the

utilization of the robot arm was planned, and the mating of two parts was represented. (This

* means the system must deduce that, when an object moves, all things mated to it move with

* it). STPE was adequate for representing this problem.

8. Conclusion

SIPE's operator description language was designed to be easy to understand (to enable

graceful interaction) while being more powerful than those found in previous domain indepen-

dent planners. Constraints, resources, and deductive operators all contribute to the power 3

of the representation. Deductive operators allow quantified variables and therefore can be

used to make fairly sophisticated deductions, thus eliminating the need to express effect's in

operators when they can be deduced. They are also useful in distinguishing main effects from
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side effects.

One of the most important features of SIPE is the ability to constrain the possible values

of variables. It is well known that this allows more efficient planning, since choices can be

delayed until information has been accumulated. Other advantages of constraints, however,

are also critical. A key consideration is that constraints allow convenient expression of a

much wider range of problems. Constraint satisfaction efficiently finds variable instantiations

by taking advantage of the fact that invariant properties of objects are encoded in the type

U hierarchy. Constraints also help prevent harmful parallel interactions.

SIPE incorporates several new mechanisms able to assist in dealing with the parallel

- interaction problem. The most significant of these mechanisms is the ability to reason about

L resources. It has been beneficial in user interaction to have reasoning about resources as

a central part of the system, because resources seem to be , natural and intuitive way to

think about objects in many domains. Combined with the system's ability to post constraints,

resource reasoning helps the system avoid many harmful interactions, helps it recognize sooner

those interactions that do occur, and helps the system solve some or these interactions more

quickly. SIPE'S handling of interactions is also improved by its abilities to differentiate side

effects and to correctly determine the purposes of actions.

Purposes in SIPE operators are used to coordinate higher level effects with lower-level

plans, and to determine the rationale of plan nodes within a hierarchical level. Being able

to mention purposes explicitly provides the flexibility needed to represent many domains.

* Knowing the rationale, SIPE is able to better correct harmful parallel interactions, and to

- replan more efficiently when things go wrong during execution.

A major difference between SIPE and previous planners is that SIPE is interactive. Its

interactive capabilities help the user guide and direct the lp .,, Ang process, allowing alternative

plans to be explored concurrently by means of the context mechanism. Thus the user can shiftA
focus as he pleases without being required to understand the program's search strategy or

* backtracking algorithm. Development or SIPE's automatic planning algorithm has illuminated
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why domain independent planners cannot do interesting meta-planning.
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